
J .  Fluid Mech. (1989), vol. 200, p p .  95-120 
Printed in Great Britain 

95 

The dynamics of the near field of strong jets 
in crossflows 

By SERGIO L. V. COELHO'T AND J. C. R. HUNT' 
Department of Engineering, University of Cambridge, Trumpington Street, 

Cambridge CB2 lPZ, UK 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 27 April 1987 and in revised form 1 June 1988) 

An inviscid three-dimensional vortex-sheet model for the near field of a strong jet 
issuing from a pipe into a crossflow is derived. The solution for this model shows that 
the essential mechanisms governing this idealized flow are the distortion of the main 
transverse vorticity by the generation of additional axial and transverse vorticity 
within the pipe owing to the pressure gradients induced by the external flow, and the 
convection of both components of vorticity from the upwind side of the jet to its 
downwind side. 

The deformation of the cross-section of the jet which is predicted by this model is 
compared with the deformation predicted by the commonly used time-dependent 
two-dimensional vortex-sheet model. Differences arise because the latter model does 
not take into account the effects of the transport of the transverse component of 
vorticity. The complete three-dimensional vortex-sheet model leads to a symmetrical 
deformation of the jet cross-section and no overall deflection of the jet in the 
direction of the stream. 

To account for viscous effects, the initial region of a strong jet issuing into a 
uniform crossflow is modelled as an entraining three-dimensional vortex sheet, which 
acts like a sheet of vortices and sinks, redistributing the vorticity in the bounding 
shear layer and inducing non-symmetrical deformations of the croas-section of the 
jet. This leads to a deflection of the jet in the direction of the stream, and the loci of 
the centroids of the cross-sections of the jet describe a quadratic cur+e. 

Deformations predicted by each of the three models are compared with 
measurements obtained from photographs of the cross-sections of a jet of air 
emerging into a uniform crossflow in a wind tunnel. Mean velocity measurements 
around the jet made with a hot-wire anemometer agree with the theory ; they clearly 
invalidate models of jets based on 'pressure drag'. 

1. Introduction 
The issuing of jets into deflecting streams has been the subject of numerous studies 

because of its wide variety of applications in engineering. Chimney plumes for the 
dispersion of pollutants in the atmosphere, the cooling of turbine blades, lifting jets 
for V/STOL aircrafts and jets of oil and gas entering the flow in oil wells are just a 
few important examples. 

Observations of the initial region of turbulent jets discharging from circular pipes 
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FIGURE 1. Models for a jet in a crossflow: (a )  entraining surface; (6) vortex pair. 

or orifices show that, first, the cross-sectional area increases as the jet entrains fluid 
from the external stream and, secondly, the shape of the cross-section changes into 
a horseshoe. The tips of these horseshoes evolve then into a pair of contrarotating 
trailing vortices (that approach asymptotically the direction of the external stream 
in the far field of the flow) with vorticity parallel to the trajectory of the jet. At the 
same time, the jet begins to  bend over in the direction of the crossflow. 

Clearly, the dominant features in this initial region are the entrainment by the jet 
shear layer, and the concentration of vorticity on the downwind side of the jet. 
Nevertheless, few attempts have been made to describe the mechanisms leading to 
such behaviour, and questions of how and why turbulent jets bend over when they 
enter cross-streams have not yet been satisfactorily answered. 

Despite the many practical fluid-mechanics problems where solutions depend on 
understanding the behaviour of jets, quite different answers to  these questions have 
been given in different fields of application, based on different explanations of the 
mechanics of the flow. This fact reduces one's confidence in many current models 
based on these different explanations. It is important that there is a basic 
understanding of the mechanisms that govern the motion of simple turbulent jets 
issuing normally to uniform crossflows before one can have confidence in the use of 
current models for jet flows in more complex situations. 

Models for the jet based on completely different approaches have been presented 
in the literature. In environmental fluid mechanics the jet flow is usually modelled 
by an integral approach, where an entraining control surface is assumed for the jet ; 
aerodynamicists have also used integral approaches, modelling the flow as a pair of 
contrarotating vortex filments or tubes in a cross-stream (e.g. Durando 1971 ; 
Broadwell & Breidenthal 1984; Karagozian & Greber 1984). Schematic repre- 
sentations of models are shown in figure 1. Satisfactory agreement with 
experimental data for the trajectory of the jet has been reported with both 
approaches. In  these integrals models, however, no attempt to match the internal 
and tlhe external flows has been made and only the trajectory and the overall size of 
the jet have been calculated. Suitable entrainment functions and coefficients and/or 
suitable drag coefficients provide satisfactory calculations for the trajectory of the 
jet, regardless of the assumptions made with respect to the mechanisms responsible 
for the deflection of the jet. In some of these models, the mechanisms is assumed to 
be pressure drag (e.g. Endo 1974; Sucec & Bowley 1976; Makihata & Miyai 1979); 
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addition of momentum by means of entrainment is the assumed mechanism in some 
other models (e.g. Platten & Keffer 1968 ; Hoult & Weil 1972) ; both mechanisms are 
considered by Schatzman (1978) and Adler & Baron (1979). 

The results obtained with the above-mentioned models show that similar 
trajectories for the jet seem to be predicted even when the dominant mechanisms are 
assumed to be quite different. The lack of any detailed comparison of the flow 
predicted by these models with experimental data mean that no firm conclusion can 
be drawn as to which are the key mechanisms for the deflection, distortion and 
formation of the trailing vortex pair of the jet. 

Previous theoretical investigations on the formation of the vortex pair have been 
based on the time-evolving two-dimensional vortex-sheet model introduced by 
Chang-Lu (1942). In these models, the flow in and outside the jet is assumed to be 
potential flow and the boundary between them to be a vortex sheet. The additional 
hypothesis is made that the form of the three-dimensional vortex sheet can be 
approximated by a two-dimensional one that evolves in time, and a uniform velocity 
a t  the nozzle is assumed as the initial condition. 

Discretizing this vortex sheet into a number of vortex filaments that are 
essentially aligned with the trajectory of the jet, Margason (1969) evaluated the 
cross-sectional distortion via a numerical computation of the movement of these 
vortex filaments. The transport of vorticity predicted by these models causes 
vorticity to concentrate on the downwind side of the vortex sheet, leading to a roll- 
up process that reflects some of the qualitative features present in real jets. However, 
according to these models, the vortex pair is formed by the concentration of the 
streamwise component of vorticity only ; the transverse component has no effect in 
this process. This leads to a total circulation which is independent of the velocity 
ratio ; this is a clear disagreement with the experimental data from Fearn & Weston 
(1974). 

The probable reasons for the disagreement between these models and detailed 
measurements are that turbulent entrainment is ignored, and that a two-dimensional 
approximation is assumed for a fully three-dimensional vortex-sheet problem. It is 
worth mentioning that the validity of this two-dimensional approximation for the 
fully three-dimensional problem appears to be based on intuitive arguments only and 
no formal analysis to support it has been presented in the literature. 

In  this paper, a new analysis of the dynamics of the near field of a strong jet issuing 
into a uniform crossflow is presented. The flow in this region allows for a rather 
rigorous analysis of the mechanisms involved in the deflection and distortion of the 
jet and also in the formation of the pair of trailing vortices. In  the initial region, the 
deflection and distortion of the jet are still small, entrainment is still limited to a thin 
mixing layer a t  its boundary, and the vortex pair is still only beginning to be 
formed. 

The commonly used unsteady two-dimensional inviscid model (Chang-Lu’s model) 
for this region is compared with the fully three-dimensional model for the inviscid 
flow it supposedly describes. It is shown that these two models do not give the same 
description of this theoretical flow, and that the correct three-dimensional solution 
for this inviscid approach of jets in crossflows does not describe the real flow. A 
satisfactory description is only obtained when this three-dimensional inviscid model 
is modified to incorporate the effects of turbulent entrainment. 

First, we shall develop an analytic solution which describes the behaviour of 
Chang-Lu’s model for small times. Chang-Lu’s model is based on the same 
parameterization of the trajectory of the jet with respect to time as is used in the 
vortex-pair approach for the far field of the flow. It models the jet as two regions of 
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irrotational flow separated by a vortex sheet that  evolves in time. With this 
approach, the interaction of the jet with the external flow is equivalent to that of a 
cylinder of fluid about which an external flow is impulsively started. This equivalence 
is apparently based on intuitive arguments only, and no formal analysis supporting 
it has been presented in the literature. 

Then, a fully three-dimensional inviscid solution for the vortex-sheet model for the 
initial region of the jet is derived, and it is shown how it differs from the solution 
given by Chang-Lu’s two-dimensional time-dependent approximation. The three- 
dimensional model includes the development of the flow out of the pipe into the jet, 
and shows how additional axial and transverse components of vorticity are generated 
a t  the pipe wall near its exit. It is found that there can be m dejlection of the jet if 
it is modelled by the vortex-sheet approximation (this negative result is in agreement 
with the recent inviscid analysis of Needham, Riley & Smith 1988). Chang-Lu’s 
model does predict a deflection of the jet but it is shown here that it is an incorrect 
approximation for the fully three-dimensional vortex-sheet model in the near field of 
the flow. 

Finally, this three-dimensional model is used as the basis for a model incorporating 
t>he effects of turbulent entrainment. This indeed leads to  the deflection of the jet 
because of the addition of the momentum brought in by the entrained fluid. This is 
the mechanism of deflection assumed by Platten & Keffer (1968) and Hoult & Weil 
(1972) in their integral models. 

Photographs and measurements of the structure of a circular turbulent jet in a 
crossflow near the jet exit were obtained in a wind tunnel and are compared with the 
jet distortions described by each of the present models : two-dimensional time- 
evolving vortex sheet, three-dimensional vortex sheet, and the ‘ entraining vortex- 
sheet ’ model (where turbulent entrainment is considered). The experimental 
procedure for obtaining the photographs is outlined in $7. 

2. The two-dimensional vortex-sheet model 
Chang-Lu’s inviscid two-dimensional time-dependent approximation produces a 

mathematical model equivalent to  that for a two-dimensional cloud instantaneously 
released in a uniform stream, which has been analysed mathematically and by 
computation of discrete vortex filaments by Rottman & Simpson (1984) and 
Rottman, Simpson & Stansby (1987). They have modelled the cloud as a bounding 
vortex sheet separating two regions of irrotational flow where the velocity potentials 
q5j for the internal flow (the cloud itself), and 9, for the external stream are defined. 
Their solutions show that when a circular cylindrical cloud is released, it begins to be 
deformed by the external flow and that this deformation is proportional to t2 in the 
early stages of the deformation. 

However, this deformation is symmetrical with respect to the normal to the free- 
stream direction and the centroid of the cloud does not move at O(tz) .  

The deformation of the interface can be derived by applying the initial conditions 

y(6, t = 0) = - 2Um sin 6, (1) 

and us(8,t = 0)  = -U,sinB (2) 

to the vortex-sheet equation for two-dimensional flows (Moore 1978), 

aY a -+-(u,y) = 0, 
at as (3) 
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FIGURE 2. Nomenclature for the two-dimensional vortex-sheet model. 

where s is the arclength of the vortex-sheet, y its strength, and u, is the average speed 
of the flow across the layer (assuming uniform density for simplicity), i.e. 

where f ( r ,  8, t )  = 0 defines the position of the vortex sheet. 
Expanding y(O,t) ,  u,(O,t) and R ( 8 , t )  (see figure 2 )  in Taylor expansions with 

respect to t ,  one can directly evaluate derivatives of any order with respect to t at 
t = 0; for y ,  u, and R(8,t) .  This gives 

This expression shows that the centroid of the cloud does move a t  O(t3 ) .  
Using the assumption that the jet flow can be parameterized with respect to time 

in this region of the flow, one substitutes t for 22/q (elements of the vortex-sheet 
travel a t  half speed) in (5). Scaling with respect to and R,, it can be seen that 
Chang-Lu’s approximation predicts the following deformation for the jet, for small 
values of h = U , / y :  

R(B, 2) = i - [222(c0s 2011 ~ 2 -  [ p ( 2  eos 38- cos B ) ]  h3 + o(h4). (6) 

This implies that the centroid of the jet, 

x = J rcos (0) 

( A  = cross-sectional area) moves downstream in proportion to z3.  

3. The three-dimensional vortex-sheet model 
The solution presented in 52 was derived on the basis of an intuitive assumption 

about the equivalence of the spatial and temporal growth of the jet. In  this section, 
a fully three-dimensional inviscid model is presented that does not require this 
assumption. The solution for this new model shows that the basis of the two- 
dimensional approach is fundamentally incorrect. 

Considering the three-dimensional vortex-sheet model for strong jets (see figure 3), 
where h = U , / q  is a small parameter, one could argue that the process of convection 
of longitudinal vorticity changes the strength of the bounding sheet as the fluid 
moves away from the nozzle, leading to the same kind of distortion as predicted by 
the two-dimensional approximation. 
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FIGURE 3. Nomenclature for the three-dimensional vortex-sheet model. 

This argument, however, is not supported by a complete analysis : the interaction 
between the jet and the stream affects the flow within the issuing pipe. Consequently, 
it is not correct to assume that the flow issuing out of the nozzle is uniform (as is 
assumed in the two-dimensional approximation). A non-uniform distribution of the 
vertical component of the velocity a t  the nozzle due to this interaction would cause 
an initially planar ring of fluid in the vortex sheet to not remain planar as it moves 
upwards along the jet. This invalidates the approximation R(8, z )  = R(8, t ) ,  where 
t = 22/74. The non-uniform flow within the issuing pipe would also induce a 
distribution of the transverse velocity, us, different from that shown in (2). 

Furthermore, the two-dimensional approximation does not take into account the 
effects of the initial azimuthal component of vorticity present in the jet, which is 
typically much stronger than the longitudinal one for the case of strong jets. The 
strength of the three-dimensional vortex sheet is a vector y ,  which can be split into 
two components. The first is due to the vorticity in the longitudinal direction, and 
can be approximated by its vertical component, y,, in the near field of the flow. The 
second is due to the strong transverse vorticity, and it can be approximated by the 
azimuthal component, ys, also in the near field of the flow. Using the vorticity 
equation, the following expression for the strength y of the vortex sheet can be 
derived : 

(71 
aY 
-+ (u ,*V)y  = ( Y ~ v ) ~ , - Y ~ ~ ~ ~ , ) ,  at 

where u, is the velocity of fluid elements in the vortex sheet, and V = 8/as s"+ a/az 2, 
where s" and 2 are unit vectors in the orthogonal directions s and z,  which are 
tangent to the surface of the vortex sheet. Expression (7) is obtained by integrating 
the vorticity equation across the vortex sheet. 

where us is defined as in (4) and, similarly to (4), 

Comparing (8) with (3), one can readily see that the three-dimensional vortex- 
sheet equation provides an extra term that has a significant effect on the longitudinal 
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strength yz along z.  According to (S), even small variations in u, can produce 
significant contributions to ayz/az because of the large values of ys. 

The material derivative for yz is a function not only of the rate of stretching of the 
vortex sheet in the azimuthal direction (a/as(u,y,)), as assumed in the two- 
dimensional model, but also of the rate at which fluid elements rotate as they travel 
upwards along the vortex-sheet (y8 au,/as). 

This rotation changes the direction of y ,  transferring vorticity from the azimuthal 
direction to the vertical one or vice versa. This induces a non-uniform distribution 
of u, over the cross-sectional area of the jet, affecting the rate of change of yz. 

I n  order to take into account the above-mentioned effects, asymptotic solutions in 
integral powers of the small parameter h = U m / q  were obtained for the three- 
dimensional vortex-sheet model, where the condition of uniform flow was required 
not at the exit of the pipe but, instead, within it, far from the exit. The boundary- 
value problem is established in terms of the velocity potentials $j and $, for the 
internal and the external regions, respectively, and is summarized as follows (with 
reference to figure 3 ; scaling all variables with respect to  y, R, and p, and assuming 
uniform density for simplicity) : 

V2$, = 0; p, ++(V$JZ = i + P  in J ,  

Vz$, = 0; P,+$(V$,)~ = +Az in E ,  

I Df = 0 on f = 0, where f ( r ,  8, z )  = 0 defines i$, 
Dt 

w e  

a Z  
- = 0  o n z = O ,  r > l ,  

Here 
m 

Fz = (Cz-z)r2+ C &J2(anr)exp(-gnz),  
n-1 
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n 1 2 3 4 5 6 ... 99 100 

A, -0.0611 0.0236 -0.0127 0.0080 -0.0055 0.0040 ... - 2 . 5 4 ~  2 . 5 0 ~  
B, -0.3892 0.0467 -0.0194 0.0107 -0.0068 0.0047 ... -2.42 x 1.56 x lo-' 

TABLE 1. Coefficients 4 and B,, 

and 

where (T, are zeros of J,, 7, are zeros of J i ,  and 4, B, and C2 are constants which can 
be determined from the boundary and matching conditions. The matching conditions 
across z = 0 require 

C, = CI Bn JZ(.,) = - C A, g n  J3(an) 
1 "  m 

n=l 2 n=l 

(giving C2 x -0.2164), and a few values for A, and B, are given in table 1. 
The behaviour of the series A, and B, was investigated and compared with the 

convergent series C:-, l / n 2  up to 100 terms. The curves for A, and B, fall well below 
the curve for CF-l l /n2,  indicating a convergence rate of O ( N - ~ ) .  In  addition, on 
evaluating $$L>o,(r, 0 = 0, z = 0) and $j;i<O,(r, 0 = 0, z = O),  it was found that these 
two functions converge as N increases, and at N = 100 no difference between them 
was detected. Similar results were found on evaluating pi$,,,,(r, 8 = 0, x = 0) and 
p;;:<,,)(r, 8 = 0,z  = 0). 

(W o ( A ~ ) :  $;3) = 0;  pj3) = 0;  $2) = ~ F ~ ~ ~ S ~ O - F ~ C O S ~ ; ~  

pL3) = 0 '  R(3) = 0, 

where F3 and Fl are non-separable functions of r and z ,  satisfying the boundary-value 
problem generated for the plane ( z ,  r ) .  

Thus, the three-dimensional vortex-sheet model gives 

1 m 

z2-2C2z- C A,J3(crn)(exp(-anz)-1 cos28+O(h4).  (11) 
n-1 

4. Comparing the solutions for the two inviscid vortex-sheet models 
Comparing (ll),  which gives the deformation according to  the fully three- 

dimensional model, with (6), which gives the deformation according to the two- 
dimensional approximation, it can be seen that, even at second order, there is a 
marked difference between the results. According to (ll), the deformation a t  O(A2) 
is symmetric and has three components : one proportional to z2,  also predicted by the 
two-dimensional model but with a constant of proportionality only one half of that 
predicted by the latter (because of the greater pressure gradient needed to accelerate 
the external two-dimensional flow in the two-dimensional time-dependent model) ; a 
second component which is linear in z ;  and a third one which decays exponentially 
with z .  The last two components of this deformation are not present in the two- 
dimensional model. The linear component of the deformation is caused by a non-zero 
distribution of the radial component of the velocity of the jet a t  the exit. The 
pressure field inside the pipe is not uniform, and the velocity field associated with it 
is also non-uniform. 
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FIGURE 4. Streamline pattern on the vortex sheet according to (a)  the two-dimensional and ( b )  
the three-dimensional vortex-sheet model. 

The exponential term in the expression for $j2) is identified as an exit effect ’ and 
ensures that the matching conditions a t  the exit are fulfilled ; the radial component 
of the jet velocity a t  the exit is indeed zero a t  r = 1. Expanding the exponential term 
of (10d) in Taylor series about z = 0, it can be seen that the linear term of this 
expansion is c:-lA, cr, J3(un) z, which cancels with the linear term -2C2 z,  since the 
matching conditions across the surface z = 0 require C, = tc:-,A, a,J,(a,). Thus, 
the solution a t  O(A2) does lead to iW2)/az = 0 at z = 0. 

The two-dimensional model assumes that the velocity field is uniform a t  the exit 
of the pipe. However, the three-dimensional model shows a deflection of the 
streamlines within the pipe at O(A2) .  Because of the symmetrical external pressure 
field the streamlines of the flow within the pipe are deflected towards the y-axis and 
away from the x-axis. Figure 4 shows the streamline pattern on the bounding vortex 
sheet according to each of the two models. Therefore, the vertical velocity 
component a t  the exit of the pipe decreases towards the pipe wall along the x-axis 
and increases symmetrically towards the pipe wall along the y-axis. The radial 
component is negative along the x-axis and positive along the y-axis, being zero a t  
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FIGURE 5 .  Corrections for (a )  the vertical velocity and ( b )  the radial velocity, a t  order h2. 

r = 1.  Figure 5 shows these velocity components a t  z = 0 for 0 = 0;  for 0 = +IT these 
distributions are symmetrically equivalent to those shown in figure 5 .  

However, the most remarkable difference between these solutions is found a t  the 
third-order term : the three-dimensional vortex-sheet solution does not describe any 
deformation a t  O(A3) .  The effects of the non-uniform flow induced by the jet within 
the pipe, and of the transport of azimuthal vorticity which were described in the first 
paragraphs of $3, completely change the deformation at this order. They inhibit the 
distortion induced by the convection of vertical vorticity from the upwind side to the 
downwind side of the vortex sheet which is predicted by the two-dimensional 
approach. It can be seen from (lob-e) that, owing to these effects, the differences in 
u, and u, a t  z = 0, compared with the distributions assumed in the two-dimensional 
model, are of order h2. 

The trajectory of an initially planar ring of fluid in the vortex sheet according to 
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FIGURE 6. Trajectory of an initially planar ring of fluid in the vortex sheet according to  (a) the 
two-dimensional and ( b )  the three-dimensional vortex-sheet model. 

each of the two models is shown in figure 6, for solutions including terms up to 
@A3).  Chang-Lu's approach assumes that the ring remains planar as it moves along 
its trajectory and the concentration of vertical vorticity in the downwind side of the 
vortex sheet (by means of convection) induces the non-symmetrical distortion of the 
jet. The three-dimensional model, however, shows a non-planar deformation of this 
ring, due to the concentration of the azimuthal component of vorticity. The lateral 
sections of the vortex lines (which are also material lines in this inviscid approach) 
move faster in the vertical direction than their upwind and downwind sections. This 
mechanism tilts the vorticity vector by different amounts along the vortex sheet, 
transferring vorticity from the azimuthal direction to the z-direction on the upwind 
side of the vortex sheet, and from the z-direction to the azimuthal direction on the 
downwind side. For an issuing angle of 90°, the processes of convection and 
transference of vorticity from one direction to another cancel each other and the net 
distributions of ys and yz remain symmetrical. The distortion of the jet is therefore 
also symmetrical. 

As a matter of fact, by inspecting the expanded forms of the Bernoulli and the 
internal-boundary-condition equations, it can be seen that $jn) and pj") are zero for 
n odd, if $ji) and pf) are also zero, for i odd < n. Therefore, i t  is found that, the 
deformation of the vortex sheet is always symmetric no matter to what order of h one 
evaluates R(8, z)! This is so because of the symmetry of the boundary conditions. If 
this symmetry is altered in any way, for instance by the introduction of a vertical 
component in the free-stream velocity, non-symmetric components of deformation 
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similar to thosc predicted by the two-dimensional model will be present in the 
asymptotic solution (this can be accomplished by the insertion of another small 
parameter which represents this vertical component of the free-stream velocity in the 
previous boundary-value problem, determining an asymptotic solution in integral 
powers of two small parameters). 

Previous work by Maskell & Spence (1959), where jet flaps of finite span (thin jets 
issuing at  small angles from the trailing edge of wings of finite span) have been 
modelled as potential flows bounded by vortex sheets, has predicted deflections for 
the jet which are greater than the values that would be obtained with the above- 
mentioned model. In  this case, however, the symmetry of the problem is broken not 
only by the coflowing component of the external flow, but also by the circulation 
produced around the wing. The difference between the strength of the bounding 
vortex sheet a t  the upwind side of the jet and a t  its downwind side is increased by 
this latter mechanism (different fluxes of transverse vorticity come from the top and 
from the bottom of the wing). This allows for the existence of a pressure discontinuity 
across the thin jet (in fact, the jet is represented by a sheet of vortices and doublets). 
However, the deflection of jets issuing a t  large angles to the stream from pipes or 
plane walls cannot be explained by these mechanisms. In these cases there would be 
no inviscid mechanism to produce a transverse circulation large enough to explain 
the deflection of the jet. At right angles to the flow, in particular, the strength of the 
vortex sheet would be the same a t  both sides of the jet. 

This analysis has shown that Chang-Lu’s two-dimensional vortex-sheet model is 
an incorrect approximation for the near field of the jet, in that i t  does not satisfy the 
boundary conditions or the three-dimensional equations that govern the jet 
behaviour in this region. It is quite widely used to model the far field of the jet; 
however, if i t  is rectified to allow for the three-dimensionality of the near field, the 
essential features of the initial development of the jet are not reproduced. In  
particular, the jet does not move downwind. The displacements of the jet are 
symmetric about the plane y = 0. Furthermore, the generation of the vorticity 
present in the bounding vortex sheet is not considered nor explained by the two- 
dimensional time-dependent model. 

Only a full three-dimensional analysis includes the tangential pressure gradients 
along the inner pipe walls that (as shown by Morton 1984) are necessary for the 
generation of vorticity yz. The three-dimensional analysis also shows that the 
vorticity disturbances superimposed on the unperturbed component yio) (convected 
along the pipe boundary layer) are generated in the region near the pipe exit by the 
pressure distribution along the pipe wall, which is induced by the presence of the 
crossflow. 

The fact that the three-dimensional inviscid vortex-sheet model cannot reproduce 
the streamwise deflection of the jet suggests that the main mechanism responsible for 
this deflection may be the addition of streamwise momentum due to viscous 
processes such as entrainment (and not by ‘pressure drag ’ as assumed in many of the 
referenced integral models). 

Taylor in his 1958 paper on the flow induced by jets recalls that ‘The sudden 
change in flow velocity a t  the cut in the theoretical flow which idealizes the action 
of the jet on the surrounding fluid seems to be more nearly related to a sheet of sinks 
than to a sheet of vortices’. 
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FIGURE 7 .  Nomenclature for the entraining vortex-sheet model. 

5. A three-dimensional model that considers turbulent entrainment 
By extending the inviscid three-dimensional model derived in $ 3  to allow for 

turbulent entrainment, a new study of the effects of viscosity is presented in this 
section. This study is carried out by deriving asymptotic solutions for a model for the 
near field of the jet that includes the effects of turbulent entrainment. 

The near field of the jet can be seen as a mixing layer of small thickness separating 
two regions of irrotational flow : the potential core and the external stream (see figure 
7). The mixing layer grows thicker as z increases as a result of turbulent entrainment. 
Assuming that the thickness of this mixing layer, 6, is proportional to the 
entrainment rate, this layer can be regarded as a thin free shear layer that entrains 
fluid from the surrounding flow. Neglecting the effects of the curvature of this 
‘entraining vortex sheet’, it can be assumed that the entrainment velocity we, is 
proportional to the local strength, Iy l ,  of the vortex sheet. This assumption is in 
agreement with Tollmien’s analysis for plane turbulent compound shear layers 
(Rajaratnam 1976), where the entrainment velocity is found to be proportional to 
the local velocity excess. 

For small ratios A = U J q ,  the entrainment coefficient for a free jet in a still 
environment, which has been extensively analysed in the literature (e.g. Pai 1954; 
Abramovich 1963; Rajaratnam 1976), can be assumed to be the constant of 
proportionality between wen and I y } .  Moreover, it  can be assumed that the entrainment 
coefficient is a small parameter E + 0, and an asymptotic solution in integral powers 
of two small parameters ( A  and E )  can be sought. From experimental data 
(Rajaratnam 1976) it is found that the entrainment coefficient for circular jets varies 
only slightly with z in the developing region of the jet, supporting the following 
relation : 

we, = “(y:+y;):+O(Ez), (12) 

The ‘internal entrainment velocity ’! wjn! is a function of the internal spreading angle 
of the shear layer, which is determined by the distribution of the momentum flux 
within the layer. Nevertheless, a constant k = O(1) can be defined relating the 
leading-order terms for wen and vjn:  
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Applying the continuity equation to the flow within the mixing layer and making 
use of (14), an equation for mass conservation in the mixing layer can be derived for 
the near field of the circular jet (in cylindrical coordinates) : 

where ug and u, are the average velocities for the flow in the mixing layer in the 
azimuthal and vertical directions, respectively, i.e. 

R, and 4 are the external and the internal radii of the mixing layer, respectively. 
Here the mixing layer is defined as the region of rotational flow. Shear-layer 
approximations for the momentum equations (Hinze 1959) indicate that the pressure 
change across the mixing layer is of order 8'. Since 6 = O(e), the following boundary- 
value problem incorporating these assumptions can be formulated (with reference to 
figure 7 ;  variables are scaled with respect to  L$, Ro and p, and uniform density is 
assumed for simplicity) : 

vz$j = 0;  P~+;(V$~) '  = ;+P ,  in J, 

vz$e = 0 ; pe + f(V$Je)' = $I2 in E ,  

= -elyl+ O ( 2 )  onf = 0, where 8, : fe(r, 8,  z )  = 0, 
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where A,, are constants determined from the boundary condition aq5Cg1)/az = 0 at 
z = 0, and T~~ are zeros of J; .  

O(A2e0):  Same expressions as in (loci), with Rj2,0) = RPjo) = R(2). (17f) 

= i - ~ 1 c ~ ~ ~ - ~ [ ~ ~ ~ ~ ~ ~ ~ 2 e ~ ~ ~ + o ~ ~ ~ , ~ 3 , ~ ~ ~ ~ ,  (18a)  

Thus, the three-dimensional entrainment model gives 

and R, = 1+[(2+k)z]e+[2(1+k)z2cos8]~h-[Z(z)cos28]h2+0(s2,h3,~h2), (18b) 

where 
m 

Z(z) = z2 -2C2z -  Z ~ J 3 ( ~ , ) [ e x p ( - a n z ) - l ] .  
n = l  

The mean radius R = (Re+Rj)/2 is then 

R(e, z )  = i + zs + [(I + I C )  z 2  cos 01 - [qZ) cos 201 ~2 + 0 ( € 2 ,  P, € P I .  (19) 

Note that the position of the centroid is now X = €A[ (  1 + k ) / 2 ]  z2+  O(e2,  A3, €A2) .  

6. Comparing the entraining vortex-sheet model with the inviscid models 
Since these results are valid for layers of small thickness it can be assumed that in 

the regions of irrotational flow the velocity field induced by the vorticity present in 
the mixing layer is the same as if the vorticity was concentrated in a narrow strip a t  
r = R : the ‘entraining vortex sheet ’. This allows for the comparison of (19) with (6) 
and (11). Doing so one finds, once again, marked differences among the results, The 
first non-symmetric term in the expression for the distortion according to an inviscid 
vortex model is of order A3 (Chang-Lu’s model) ; a much higher order in h than the 
non-symmetric term in (19) : this term is of order As. The combined effects of the 
influx of fluid to the mixing layer due to turbulent entrainment, and its convection 
from the upwind side to the downwind side of the jet, lead to a higher rate of increase 
of 6 on the downwind face. The centroid of the area determined by R(8, z )  then shifts 
downwind, by an amount which is, a t  first order, proportional to E and A. Turbulent 
entrainment also provides an influx of momentum from the external stream to the 
mixing layer, which contributes to  the rate of stretching of fluid elements within this 
layer. From (lob-e) and (17b-e) it is seen that the change in au,/as and au,/as with 
respect to the distributions predicted by vortex-sheet models is also of order AE. 

The theoretical flows predicted by the inviscid vortex-sheet models are dependent 
only upon the strength of the vortex sheet. But now, the flow induced by the ‘sinks’ 
which were introduced in the vortex sheet has a significant effect on the movement 
of the initially planar rings of fluid discussed in $4. Vortex-sheet models cannot allow 
for these effects. The entraining fluid further increases the overall momentum of the 
mixing layer in the x-direction, increasing u, as z increases. This leads to a more 
intensive concentration of y8 a t  the downwind side of the jet. This stronger 
concentration is enough to compensate for the effects of vorticity transference from 
the azimuthal to the vertical direction, determining larger vaiues for u, in the 
downwind side of the jet. Figure 8 shows the trajectory of an initially planar ring of 
fluid in the boundary of the jet, according to the entraining vortex-sheet model. 

General aspects of the topology of the flow along transverse planes are shown in 
figure 9. The pattern and the topology of these streamlines is quite different from 
that of the flow past a rigid bluff body. Figure 9 ( a )  shows a single node a t  the 
downwind side of the jet contour in the near field. As the jet develops, two nodes 
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Y \  

X 

\ 
FIGURE 8. Trajectory of an initially planar ring of fluid in the boundary of the jet, according to  
the entraining vortex-sheet model. The downwind side of the ring moves faster because of the larger 
vertical velocity induced by the concentration of azimuthal vorticity in this region. This behaviour 
is also observed in the numerical simulation of the flow by Sykes, Lewellen & Parker (1986). 
Compare this with figure 6 ( b ) .  

FIGURE 9. Topology of the flow over transversal planes: S denotes saddle points and N denotes 
node points. ( a )  refers to the initial region only; after the formation of the trailing vortices the 
topology should be more like ( b ) .  

appear on the downwind face, where vortices begin to  roll up. The number of nodes 
and saddles satisfy the topological rules set out by Hunt et al. (1978). A detailed 
experimental study of the topology of the near field of jets has also been made by 
Foss (1980). The position of the rear ‘stagnation ’ point is a function of A l e ,  which is 
shown graphically in figure 10. This variation of the location of the rear stagnation 
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A / €  

FIGURE 10. Position of the rear saddle as a function of A / &  (jet stiffnesslentrainment constant) 
according to the entraining vortex-sheet model, R, = 1). 

point is similar to that obtained by the familiar calculation of a line source in a 
crossflow (Milne-Thomson 1960). 

An important aspect of the asymptotic solutions for the entraining vortex-sheet 
model is the dependence of the initial distortion of the jet on the intensity of the 
turbulence present in the mixing layer. Different turbulence intensities for the 
incoming jet flow could induce different turbulent intensities in the mixing layer, 
determining different entrainment coefficients. The initial distortion of the jet would 
then also be a function of the level of turbulence present in the incoming flow. 
However, the intensity of turbulence in the mixing layer is very high (Andreopoulos 
& Rodi 1984 report measurements for (u")i/q up to  0.3 in the mixing layer) and so 
only high levels of turbulence in the incoming jet flow are likely to have significant 
effects on the initial developing of the flow. Turbulence in the oncoming crossflow is 
unlikely to have a considerable effect on the entrainment coefficient for strong jets 
because even relatively high turbulence intensities with rspect to U, would be 
negligible with respect to the jet velocity 4, meaning that velocity fluctuations 
induced by turbulence in the crossflow are very unlikely to be of the same order of 
magnitude as the velocity fluctuations in the mixing layer. Unfortunately, no 
systematic measurements of these effects have been found in the literature. 

Another important result of the entraining vortex-sheet model is the prediction of 
the initial trajectory of the jet. According to  (19) the position of the centroid of the 
cross-sections in the initial region is proportional to h and z2 (at the lowest order), 
leading to z x h-f& (where x is the distance downstream from the jet exit) ; quite 
different from the behaviour in the far field. The assumption that the rolled up 
vortices control the far field leads to z x h-ixi (Broadwell & Breidental 1984) 
Experimental researchers seem to find z K h - a ~ b ,  with a varying from 0.47 to 1 and 
b from 0.33 to 0.39. The reason for such a wide range of values for these coefficients 
is probably the fact that the evaluation of these constants is usually based on 
measurements taken from the whole range of the trajectory of the jet, disregarding 
the different behaviour suggested by the present results for the initial and far regions. 
Thus, the different ranges at which data are collected determine different values for 
these constants. 



112 S. L. V.  Coelho and J .  C .  R. Hunt 

Camera 

- Sheet of light 

1 Laser 
f Smoke 
1 

Air Glass 
rod 

FIGURE 11. Experiment arrangement in the CUED smoke wind tunnel. 

7. Comparison of the present models with experimental observation 
Despite the vast literature on jets in crossflows, details of the flow near the jet exit 

have not been measured in the detail necessary to distinguish between different 
models. Thus, some new experiments were conducted in the Cambridge University 
Engineering Department’s wind tunnel (described by Head & Bandyopadhyay 
1981). The tunnel is specially designed for visualization studies of flows, using smoke 
as a tracer and laser illumination. The wind tunnel has a 1 m x 1 m square cross- 
section and is equipped with a 5 W laser generator. Air was supplied to the jet pipe 
by a flexible tube from a compressed air supply. Flow straighteners ensured a 
uniform velocity profile and low turbulence intensities (0.5 %) at the pipe exit. This 
was placed 0.4 m from the tunnel wall, a distance sufficient to avoid boundary-layer 
effects. The jet was directed perpendicularly to the oncoming flow, which was 
uniform and contained weak small-scale turbulence with intensity of about 0.3 Yo. A 
novel feature of the experiment was to introduce smoke with a 5 mm diameter smoke 
probe placed upstream from the pipe exit in such a position that a significant amount 
of the smoke delivered to the stream was entrained by the mixing layer in the initial 
region of the jet. The probe did not affect the jet flow. Transverse illumination was 
provided by a horizontal sheet of light, obtained by refracting the laser beam 
through a glass rod. This allowed for the visualization of the cross-sections of the jet 
and its potential core. 

Positioning the sheet of light a t  different distances from the exit, cross-sections at 
different levels could be photographed from the transparent top wall of the tunnel. 
Figure 11 shows schematically the experimental set-up. 

Mean and fluctuating velocity measurements were also made with a hot-wire 
anemometer around the initial region of the jet. 

Using the photographs, the experimental jet cross-section can be compared with 
the predictions of each of the three models presented in $92, 3 and 5. Cross-sections 
for an initial jet diameter do = 20 mm, and jet and stream velocities 9 = 9 m/s, and 
Uw = 0.9 m/s (a = 10, and Rej 11400) for two different distances from the exit 
( z / d ,  = 3, and z/d,  = 4) are reproduced in figures 12 and 13, together with the 
corresponding predictions obtained with each of the three models. Hot-wire 
measurements of the external flow for a jet in the absence of a crossflow confirmed 
the value E M 0.03 reported by Rajaratnam (1976), and this was the value used for 
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FIGURE 12. (a) Theoretical cross-section of the jet at %/do = 3 for A = 0.1 and .s = 0.03. . . . , 2D 
vortex-sheet model; ---, 3D vortex-sheet model ; __ , entraining model; -.-. , initial jet 
diameter. ( b )  Cross-section visualized by entrained smoke for z /d ,  = 3 and h = 0.1. 

8 in the theoretical calculations with the entraining vortex-sheet model. From 
experimental measurements, also reported by Rajaratnam (1976), it  is found that 
k w 3 for turbulent axisymmetric jets, and this value was used in the theoretical 
calculations with the entraining vortex-sheet model. 

The entraining vortex-sheet model seems to describe some of the important 
aspects of the flow: (i) no deflection of the potential core is predicted by the model; 
(ii) the jet expands laterally and in the downwind direction; (iii) the upwind side of 
the jet 'flattens' as the jet leaves the exit. 

A quantitative measurement of the deformation of the jet in its initial region can 
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FIGURE 13. (a )  Theoretical cross-section of the jet at z/d,  = 4 for h = 0.1 and E = 0.03. . . ., 2D 
vortex-sheet model ; ~ - ~ , 3D vortex-sheet model; -, entraining model; - . ~  ., initial jet 
diameter. ( b )  Cross-section visualized by entrained smoke for %/do = 4 and h = 0.1. 

be obtained from the positions, a t  each cross-section, of the outer and potential core 
boundaries, with respect to the axis a t  the centre of the initially circular cross-section 
(the centreline defined by the loci of maximum velocity obviously does not apply to 
this region of the flow). Figure 14 defines these characteristic lengths, which are the 
spanwise width of the jet ( b y ) ,  the position of the upwind boundary of the jet (bx,), 
the position of the downwind boundary of the jet (bx2) ,  the streamwise and spanwise 
widths of the potential core (bZ and by*, respectively), and the position along the 5- 
axis where the maximum jet breadth occurs (xmax). Four relevant ratios of these 
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FIGURE 14. Characteristic lengths for the form of the cross-sections: (a) entraining model; ( b )  
three-dimensional vortex-sheet model ; ( c )  two-dimensional time-dependent vortex-sheet model. 

lengths ([b,,+b,,]/b,, b,,/b,,, b:/b,*, and x,,,/b,,) are shown in figures 15 and 16, 
together with the predictions from each of the three models discussed herein. Figure 
15 shows how all these models give the same initial prediction that, as the jet 
emerges, the spanwise width increases faster than the streamwise width (note that 
integral models do not account for this effect). Figure 16 shows that, as the jet travels 
along z, the streamwise thickness of the jet increases more rapidly on the downwind 
side than on the upwind side. This is caused by the transport of the entrained fluid 
towards the downwind side, and agrees closely with the entraining vortex-sheet 
model. The two inviscid vortex-sheet models predict completely different motions for 
the upwind and the downwind faces of the jet. 

Experiments have shown that the deflection of the potential core is only observed 
for relatively large ratios h (Rajaratnam 1976). This supports the idea that although 
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FIGURE 15. Characteristic spanwise ratios (see figure 14) for A = 0.1. -, entraining vortex-sheet 
model ; ---, 3D vortex-sheet model; . . . * * , 2D vortex-sheet model. Top curves refer to external 
boundary and lower continuous curve to potential core (for E = 0.03). Measurements from 
photographs : 0, the external boundary ; 0, the potential core. 

FIGURE 16. Characteristic streamwise ratios (see figure 14) for A = 0.1. -, entraining vortex- 
sheet model; ---, 3D vortex-sheet model ; . . . . . , 2D vortex-sheet model. Top curves refer to 
b,,/b,, and lower curves to q,,JbzZ (for E = 0.03). Measurements from photographs: 0,  the first 
ratio; 0, the latter. 

‘pressure drag’ must occur because of the formation of a wake behind the jet, it 
produces deformations that are negligible when compared to those induced by the 
addition of streamwise momentum due to entrainment. 

Another test of whether a jet really acts on the external flow like a rigid cylinder 
is to measure the mean velocity in the (x, y)-plane along the y-axis. For solid 
cylinders uzmax/U,, x 1.4, but according to the jet theory of $ 5  this value should be 
close to 2 for the entraining jet (see figure 17). This prediction was tested by hot-wire 
measurements of the total mean velocity in the (5, y)-plane (up = (uz+u;)f), over two 
planes above the exit ( z  = O.lRo and z = Ro). Figure 17 shows that the measured 
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FIGURE 17. Mean velocities and turbulent intensities at x = 0 for the external flow about a 
jet issuing from a pipe ( A  = 0.1). Solid lines are theoretical velocity distributions (top one for z = 
0.1R0 and lower one for z = I?,). Measured values: 0,  0 ,  z = 0. lR,; 0, +, z = R,. Open symbols, 
up; filled symbols, ( (u ' )~)~/u , .  

values of u,/U. are less than the predicted values close to the pipe exit. This is 
because the theory assumes potential flow around the pipe, whereas in reality the 
flow is separated. However, within one radius above the exit the effects of the 
separated flow around the pipe become small; figure 17 shows how at  z = R, the 
measured velocities of the external flow agree well with the theoretical predictions, 
and, in particular, with the maximum value of upm~x/Uoo x 1.85. 

These values for uJU,  can only be obtained for the flow about a rigid circular 
cylinder when there is surface suction. Without suction, separation prevents this 
value being reached. Therefore, the drag coefficient for the jet must be smaller than 
that for a solid body of the same shape. Entrainment (or surface suction) reduces the 
width of the wake formed behind it and, consequently, reduces the wake drag. 
Hoerner (1965) presents a diagram showing the reduction of the wake drag with 
suction. However, most integral models based on pressure drag need drag coefficients 
of between 1.5 and 3. 

Since it has been suggested by Moussa, Trischa & Eskinazi (1977) that the presence 
of a wall in the (5, y)-plane at  the jet exit has a significant effect on the external 
velocity field, measurements of the velocity field around the jet were also made with 
a false floor, placed flush with the jet exit, that extended for three jet diameters 
upstream from the pipe centreline. This short length is sufficient for blocking any 
vertical motion near the pipe exit, and for disconnecting the flow above the jet exit 
from the flow around the pipe below the jet exit. But the length is short enough to 
avoid the building up of a boundary layer of significant thickness. Figure 18 shows 
that there is no significant effect of the false floor on the external flow. 

The cross-sections of the jet were also photographed in the presence of this plane 
wall but no measurable difference in t'he boundaries of the shear layer was 
observed. 

Additional experimental support for the description of the flow given by the 
entraining vortex-sheet model can also be found in the literature. Measurements of 
u, in the near field of the flow by Kamotani & Greber (1972) and by Moussa et al. 
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FIQURE 18. Mean velocities and turbulence intensities a t  x = 0 and z = R, for the external flow 
about a jet ( A  = 0.1). 0 and + are measured values for a jet issuing from a pipe; A and A are 
for a jet issuing from a hole in a wall (no boundary layer); open symbols, up; filled symbols, 
{ ( U ’ ) ~ ) ; / U ~ .  Solid line is the theoretical velocity distribution for the first case (theory predicts small 
differences between the two cases). 

(1977) show a rapid asymmetric change in the vertical component of the velocity 
along the trajectory of the jet. This supports the movement of the initially planar 
ring of fluid shown in figure 8. 

8. Conclusions 
The present analysis shows that turbulent entrainment and the transport of the 

transverse component of vorticity largely control the dynamics of the jet and its 
bounding shear layer in the near field of jets in crossflows. In particular, entrainment 
is the main mechanism that leads to the deflection of strong turbulent jets in the 
direction of the stream. 

This analysis and the experiments performed show that the external flow around 
a strong jet is, to a first approximation, potential flow around a circular cylinder with 
suction, caused by the entrainment into the jet; the diffusion of vorticity into the 
wake is weak and therefore the jet does not act on the external flow like a solid bluff 
body. So, the ‘pressure-drag’ mechanism is negligible compared with the effects of 
entrainment on the deflection of the jet. 

It has also been shown that Chang-Lu’s unsteady two-dimensional vortex-sheet 
model is a basically erroneous approximation for the fully three-dimensional vortex- 
sheet model for the near field of these flows. The solutions obtained for this three- 
dimensional vortex-sheet model show that inviscid mechanisms alone are not 
capable of describing the dynamics of the near field. In  particular, they cannot 
explain the deflection of the jet in the direction of the stream. 

The new concepts for the vorticity dynamics that have emerged here are useful in 
assessing integral models for entraining jets in crossflows, and perhaps improving 
them. The integral models based on the entrainment mechanism only (e.g. Platten 
& Keffer 1968; Hoult & Weil 1972) preserve the essential features of the near field 
of these flows for most of the strong jets ( A  < 0.25 ; no shift of the potential core has 
been observed below these ratios). For h > 0.25 the effects of the diffusion of 
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vorticity into the jet’s turbulent wake have to be taken into account. Some integral 
models that allow for this effect (by means of the ‘pressure-drag’ mechanism) also 
include the entrainment mechanism. But the combining of these mechanisms 
appears to be rather arbitrary. 

From the engineering viewpoint, many of the existing integral models provide 
satisfactory descriptions for the trajectory and overall size of the jet, within specified 
ranges of their trajectories. However, these models have been ‘tuned’ for given 
configurations of the flow (the form of the entrainment function is arbitrarily 
prescribed, and the tuning constants are determined by fitting the theory to limited 
experimental data). They cannot be applied to different configurations of these flows 
without previous retuning (modifications of the arbitrary entrainment functions and 
new coefficients are necessary). 

In addition to this, these integral models do not describe either the shape of the 
jet or the development of the trailing vortex pair. The circulation of these vortices 
ought to be calculated to improve the models of these flows, when the far field is 
modelled in terms of the vortex pairs. This useful approach for the far field cannot 
be applied to the initial bending over region. 

A numerical computation of the flow that would link the ‘initial conditions ’ at the 
near field, as given by the mathematical model developed in $ 5 ,  to the vortex-pair 
solution in the far field, might be a consistent and practical way of evaluating the 
integral parameters and functions to be used in specific integral models for different 
configurations of the flow. 

The analysis presented shows that numerical computations of jets in crossflows 
must include the effects of turbulent entrainment and the transport of the transverse 
component of vorticity. 

It has also been shown in this paper that experiments can be and need to be 
devised that genuinely discriminate between different models. These tests could also 
be used to examine computations closely. 
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